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Abstract-Steady solutions in the form of hexagons and two-dimensional rolls are obtained for convection 
in a horizontal porous layer heated from within. The stability of the flows with respect to small 
disturbances is investigated. It is found that down-hexagons are stable for Rayleigh numbers R up to 
8 times the critical value (8R,), while up-hexagons are unstable for all values of R. Moreover, two- 
dimensional rolls are found to be stable in the range 3R, < R -=c 7R,. Good agreement with some of 

the experimental observations of Buretta [l] is found. 

NOMENCLATURE 

defined by (3.5); 
heat capacity at constant pressure; 
defined by (3.8); 
Nusselt number; 
generated heat per unit time; 
Rayleigh number; 
critical Rayleigh number; 
temperature; 
standard temperature; 
defined by (2.5); 
defined by (3.1); 
mean temperature difference between the 
boundaries; 
temperature difference between the 
boundaries for pure heat conduction; 

=(Z&;); 

=v.v; 

a2 a2 
=s+ay’; 

wave number; 
acceleration due to gravity; 
depth of the layer; 
permeability; 
pressure; 
= (u, u, w), velocity; 
time; 

x, y, z, Cartesian coordinates. 

Greek symbols 

% coefficient of expansion; 

6, z ( a2 -v2 
= axaz’dyaz’ l ’ > 

8, temperature; 

%I, thermal diffusivity; 

p, viscosity; 

PO3 standard density; 
0, growth rate. 

Superscripts 
^ 

*’ 
perturbation quantities; 
complex conjugate quantities. 

1. INTRODUCTION 

THIS paper is concerned with thermal convection in a 
porous medium. The convective motion is generated 
by internal heat sources which give a basic tempera- 
ture gradient dT/dz varying with the vertical coordinate 
z. Porous convection is of considerable geophysical 
and technical interest, as it may occur in geothermal 
areas, through aquifers, oil reservoirs, snow layers, etc. 
(Combarnous and Bories [2]). 

Porous convection when dT/dz being a constant, 
has been investigated by several authors. Horton and 
Rogers [3] and later Lapwood [4] determined analyti- 
cally that above a certain dimensionless temperature 
gradient, convection can occur. Laboratory experi- 
ments have been performed by Schneider [5], Elder 
[6], Bories and Combarnous [7] and others. Theor- 
etical and numerical analysis of finite amplitude con- 
vection have been performed among others by Elder 
[6], Palm, Weber and Kvernvold [8], Strauss [9] and 
Kvernvold [lo]. 

In physical problems, however, a constant tempera- 
ture gradient generally does not occur. Vertical vari- 
ations of dT/dz may be due to variation in time of the 
temperature at the boundaries, or due to vertical vari- 
ations of the thermal diffusivity for the porous medium. 
In the present analysis, however, the variation of dT/dz 
is thought ofbeing due to uniformly distributed internal 
heat sources, which give a simple expression for the 
basic temperature. 

To our knowledge, almost no research has been 
reported dealing with convection in a porous layer 
where dT/dz depends on z. Hwang [ll] has studied 
the stability problem of convection in a porous layer 
with uniform heating from within and from below. He 
found that the critical Rayleigh number, &, decreases, 
as the effect of internal heating increases. For a model 
similar to the present model experimental studies have 

045 



1046 MORTEN TVEITEREID 

been performed by Buretta [ 11. He measured the con- 
vective heat transport through the medium for Rayleigh 
numbers up to about 30&. At a supercritical Rayleigh 
number, which appeared to depend on layer properties, 
a discontinuous jump in the convective heat transfer 
occured. In view of this he postulated that R, is a 
bifurcation point beyond which two finite amplitude 
modes of convection are possible. 

In this paper we shall calculate the critical Rayleigh 
number. Moreover, we shall derive steady solutions by 
a numerical technique, and examine the stability of 
these solutions with respect to small disturbances. 

2. GOVERNING EQUATIONS 

We consider a horizontaily infinite layer of porous 
material saturated with fluid and heated from within by 
a uniform distribution of heat sources. The layer is 
bounded by two horizontal and impermeable planes 
separated by a distance h. The upper plane is taken 
to be perfect heat conductor and maintained at constant 
temperature, and the lower plane is taken to be perfect 
heat insulator. 

In the Boussinesq approximation the equations 
governing the motion of the fluid may be written 
(Palm and Weber [12]) 

Vp+i’o[l-cc(T--To)]gk+~v = 0 (2.1) 

V.v=O (2.2) 

(C&m aT Q ----+v.VT = rc,V2TfC-. 
c, at 

(2.3) 
P 

Here (2.1) is the equation of motion, (2.2) the con- 
tinuity equation and (2.3) the heat equation. Moreover, 
p denotes the pressure, v = (u, v, w) the velocity, T the 
temperature, p. a reference density, To a reference 
temperature, a the coefficient of expansion, 9 the 
acceleration due to gravity, k a unit vector directed 
upwards, p the dynamic viscosity, k the permeability, 
ic the thermal diffusivity, C, the heat capacity at con- 
stant pressure and Q the generated heat in the layer 
per unit time. The subscript m denotes properties of 
the fluid-solid mixture. We have chosen a Cartesian 
coordinate system (x, J’, z) where the z-axis is directed 
upwards. 

With the lower boundary at z = 0 the equations 
(2.1)-(2.3) are subjected to the boundary conditions 

C?T w=o, -L=o; 
dZ 

z=o 
(2.4) 

w = 0, T=O; z = h. 

The temperature scale is chosen such that the constant 
temperature of the upper boundary is equal to zero. 

When Q is small, the heat transfer is in the form of 
conduction (v = 0). Let the static pressure and the 
conduction temperature then be denoted by ps and z, 
respectively. From (2.3) and (2.4) we find that 

T,= &(h2-z2). @.5) 
P m 

For larger Q, in the convective regime, we write 

v=v’, p=psl-p’, T= T,+B’. (2.6) 

The equations may be written in a non-dimensional 
form by choosing h as a characteristic scale for length, 
K,,% for velocity, (C,,), hZ/Cph-, for time, p,/k for 
pressure, AT,/R for 0’ and AT, for T,. Here AT0 is the 
temperature difference between the planes for pure 
heat conduction and R the Rayleigh number, defined by 

Omitting the primes the equations (2.1)-(2.4) then take 
the non-dimensional form 

Vp-Bk+v = 0 (2.8) 

v-v=0 (2.9) 

V%+ZRzw = ;+v.F8 (2.10) 

with the boundary conditions 

w=do=@ 
az 3 

z=o 
(2.11) 

w=B=O; z= 1. 

The linearized version of (2.8)-(2.11) is an eigenvalue 
problem with R = R. as the eigenvalue. Introducing 
the wave number a, defined by 

(2.12) 

R0 becomes a function of a. The minimum value & 
of R. for a = a, defines the value of the Rayleigh 
number for the onset of convection, R. = R,(a) is 
calculated by developing the solution in a power series 
of z. By applying 50 terms of this series, we found that 

R, = 30.933, a, = 2.448. (2.13) 

This result was checked by taking into account 100 
terms without obtaining any changes of the given 
values. 

3. STEADY SOLUTIONS 

It follows from (2.8) and (2.9) that the velocity is 
poloidal, giving _ _ 

v=#jv= ! -2,a2,-v: v; 
axaz ayaz ) (3.1) 

Thus, by el~inating the pressure term we obtain from 
(2.8)-(2.11) 

vzv= -Q (3.2) 

V’tJ-2RzVi7V = v.VB (3.3) 

with the boundary conditions 

(3.4) 

v=e=o; z= 1. 

Considering solutions which are Fourier modes in 
the x,y-coordinates, 0 may be written 

9 = 2 f Bpqheifpkx+pfy)cos(h-_)Xz. (3.5) 
h=i p.q=-m 
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Here k and I are the components of the wave number 
vector in the x- and y-direction, respectively. More- 
over, Bplh = BTp_qh which ensure that (3.5) is real. 
The star denotes the complex conjugate. Correspond- 
ing to (3.5), i/may be written 

I/ = 1 Bplh ei(pkx+q’Y)F&c, z) (3.6) 

where K’ = (pk)* + (ql)*. Fh(~, z) is found from (3.2) and 
(3.4) (see Appendix). 

Introducing (3.5) and (3.6) into (3.3), multiplying this 
by exp{ - i(rkx +sly)} cos@ -&cz and averaging over 
the layer, we obtain a system of equations which 
determine the unknown coefficients BISB: 

f{(g -$)2n2 + v’} &,- 2%~’ 1 a@, v, g)Bmh 

- hc, ,Jzr {(@k2 +qul’)b(h :A g) 
’ q+u=s 

+ K*C(h, K,,f, g)}BpqhBtu, = 0 (3.7) 

where v* = (rk)’ + (sl)‘. The coefficients a, b and c are 
given in the Appendix. 

The system of equations (3.7) has many different 
types of possible solutions. We shall, however, limit our 
analysis to the possibility of flow patterns consisting 
of hexagons or two-dimensional rolls. Probably, as in 
the case of free convection in a horizontal fluid layer, 
only hexagons and two-dimensional rolls can be stable 
flows for moderate Rayleigh numbers (Segel [13], 
Palm [14], Tveitereid and Palm [16]). To obtain this 
two types of flow as solutions of (3.7), we may require 
that all Brsg are real, Blsg = BIWsg, r+ s equal to an 
even numb&, and that k2 = 312F = 3a2f4. Moreover, 
we truncate the infinite system by neglecting all modes 
for which 

g2+3r2/4+s2/4> M2+1. (3.8) 

Here M is an integer. In order to specify the values 
to be used for M, we introduce the Nusselt number 
NM defined by 

NM= AT,/AT = 1 
i( 

l+ 5 B&R 
g=l > 

(3.9) 

where AT is the mean temperature difference between 
the planes and AT, the temperature difference in the 
case of pure heat conduction. If NM differs from NY _ 1 
by less than lx, the solution is accepted to be suf- 
ficiently accurate. 

By using a Newton-Raphson method to solve (3.7), 
we find that two-dimensional rolls and both down- 
hexagons (i.e. descending flow in the centre of the cells) 
and up-hexagons are steady state configurations of our 
problem. 

4. STABILITY ANALYSIS 

Let 8 and i = SF denote a small variation of 0 and v, 
respectively. Furthermore, we assume an exponential 
time dependence such that 

where cr is the growth rate. By eliminating the pressure 

term, replacing v with v+t and 0 with 0+8 in (2.8)- 
(2.11), the equations governing the perturbations are 

V*v= -6 (4.2) 

V2&2RzV:v = aB+t.Vt’+v.V8 (4.3) 

with the boundary conditions 

+o; z=o 

B=tj=O; z= 1. 

Assuming periodical solutions in x and y, 0 may be 
written 

8 = ei(“X+~~Y)C~Whei(pk~+qly)COS(h_~))Kz (4.5) 

where E and 6 are free parameters. 
To obtain a complete stability analysis of the 

hexagonal flow 6 and E are varied from zero to one 
and from zero to 6/3, respectively. For two-dimensional 
rolls with axis parallel the x-axis 6 and E are varied 
from zero to one and from zero to infinity, respectively. 

From (4.2) and (4.5) we obtain 

p = ei(““+d’Y)CBWhei(pkx+qlY)~h(lZ, z) (4.6) 

where i2 = (p + e)*k2 + (q + ~5)~1*. We introduce (4.5) 
and (4.6) into (4.3), multiply with 

exp{ - i(ekx+ hly)} exp{ - i(rkx+sly)} cos(g -$)nz 

and average over the layer. Then, an infinite set of 
linear and homogeneous equations determining &, 
follows. As in the previous section, we take into account 
only those equations for which g2 +$r* +is* < M2 + 1. 
The stability problem is thus reduced to an eigenvalue 
problem with (r as the eigenvalue. If for given R and a 
at least one of the eigenvalues has positive real part, 
the examined flow is unstable. 

5. RESULTS AND DlSCU!3SION 

Figure 1 shows the results of the stability calcu- 
lations. We find that down-hexagons and two-dimen- 
sional rolls are stable in a region of the (a, R)-plane, 
while up-hexagons are unstable for all values of a and R. 

Hexa~om 
The down-hexagons are stable in a rather small part 

of the wave number range from R up to SR. The 
stable region is tilted to the right, such that the wave- 
length of the cells at BR, is almost halved compared 
with the wavelength at R. Most of the curve which 
encloses the stable region (the neutral curve), is defined 
by non-oscillatory disturbances (i.e. 0 = 0). From 4R 
up to BR, however, the left branch of the neutral 
curve is defined by oscillatory distrubances (i.e. the 
imaginary part of cr is different from zero). Moreover, 
also a subcritical region is found. This is, however, 
very small (30.91 < R < R, = 30.93) and is of no 
practical interest. 

The Nusselt number is illustrated in Fig. 2 for 
M = 5 and 6. We observe that N6 differs from N5 by 
less than 1%. This small difference, together with almost 
the same stable region for M = 5 and 6 (see Fig. l), 
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01 II I I 1 
2 *, 3 4 a 

FIG. 1. The stable regions. -, the neutral curve for down- 
hexagons. Stable inside, unstable outside.-, the neutral 
curve for two-dimensional rolls. Stable inside, unstable 

outside. *e***, the marginal stable curve. 

I 

1 5 R/R, 

FIG. 2. The Nusselt number as a function of the Rayleigh 
number. 0, 0, values of the Nusselt number from 

Buretta [ 11. 

R/R, = 8.~ 
0.1 

FIG. 3. The horizontally averaged temperature for the 
hexagonal flow. 

indicates that M = 6 defines an acceptable truncation 
of the equations. 

The horizontally averaged temperature field, given by 

1 
;i;= T”+x 5 B,,,cos(g--i_)ZZ (5.1) 

9 1 

is shown in Fig. 3. As R is increased above R,, we 
observe that the interior and the lower part of the layer 
become nearly isothermal, while a “thermal-boundary 
layer” is formed in the upper part of the layer. 

Rolls 
Two-dimensional rolls are stable in a broad wave 

number range from 3R, up to 7R,. There is two types 
of disturbances which define the neutral curve. The 
right and the left branch are defined by cross roll 
disturbances, while the top branch is defined by 
Eckhaus disturbances (for a review of these types of 
disturbances: see Busse [15]). In the present case both 
the cross roll instability and the Eckhaus instability are 
non-oscillatory. To our knowledge the Eckhaus insta- 
bility has never been observed in experiments. This is 
because the Eckhaus instability usually becomes im- 
portant only for small supercritical Rayleigh numbers. 
The present result shows, however, that it should be 
possible to study the Eckhaus mechanism also in 
experiments. 

The Nusselt number for steady two-dimensional rolls 
are given in Fig. 2 for M = 5 and 7. We notice that 
N, differs from N5 by less than 1%. Also the stable 
region is calculated for M = 5 and 7. We find, however, 
the same neutral curve for these two values of M. 
Moreover, we observe the very small difference between 
the Nusselt numbers for rolls and hexagons. This fact 
supports the frequently used assumption that the con- 
vective heat transfer in a convection layer is nearly 
independent of the planform of the motion. 

By comparing our results in the present work with 
the results in [16,17] we find agreement as to the sign 
of the circulation in the hexagonal cells. In these papers 
we found that down-hexagons are stable and up- 
hexagons unstable when the second derivative of the 
basic temperature is less than zero (as in the present 
case) and vice versa. The sign of the circulation is 
also in accordance with the observations in [l&19]. 

For Rayleigh numbers from 3R, up to 7R, we found 
both stable rolls and stable hexagons. This bifurcation 
phenomenon must be due to properties of the porous 
medium. Since, in [16], where we studied convection 
in a fluid layer subjected to the same thermal conditions 
as the present ones, only down-hexagons were found 
to be stable. 

Also different from the results in [16] is our finding 
of an upper limit of stable motion. However, the 
occurrence of unstable convection above 8R, is prob- 
ably caused by thermal instability of the thermal 
boundary layer. Let 6 and Ra denote the dimensionless 
thickness and the Rayleigh number of the boundary 
layer, respectively. Then 

Rs = RT(z = l-6)& (5.2) 
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If T(z = 1 - 6)6 > l/8 at R = SK, Rd becomes larger 9. J. M. Strauss, Large amplitude convection in porous 
than R,. From Fig. 3 we observe that this condition media, J. Fluid Mech. 64, 51 (1974). 

may be fulfilled. In a fluid layer, however, where Ra 10. 0. Kvernvold, Non-linear convection in a porous 

is proportional to a3, Rd does not become larger than 
medium. AnnI. Math., Univ. of Oslo, Preprint Ser. 
No. 1 (1975).- 

R, for moderate values of R. 11. 
Finally, also shown in Fig. 2 are the experimental 

values of N found by Buretta [l]. At a supercritical 
Rayleigh number RD, depending on the diameter of 
the beads, he observed a remarkable discontinuity in 
the convective heat transfer. For R higher than RI, 

our numerical values of N agree very well with the 
experimental values. For R less than RD, however, the 
agreement is rather bad. This discrepancy, we believe, 
is caused by experimental difficulties. 

6. SUMMARY 

In this paper we have studied finite amplitude con- 
vection in a porous medium heated from within. Three 
different steady flows are analysed : down-hexagons, 
up-hexagons and two-dimensional rolls. By examining 
the stability of the flows with respect to small dis- 
turbances, the down-hexagons and the rolls are found 
to be stable planforms. The results of the stability 
analysis are shown in Fig. 1. Worth mentioning is also 
the occurrence of oscillatory instability of the down- 
hexagons. From 4R, up to 8R, the left branch of the 
neutral curve was defined by disturbances having a 
complex growth rate. 

Moreover, in Fig. 2 we have compared the convective 
heat transfer with experimental values obtained by 
Buretta [I]. Some of the experimental values show 
good agreement with our values. 

with the boundary conditions 
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F,,(K, z) = A,,(~)cos(h-$)~~z+Cj~)(ti)e-~~ 

+ CA2 '(K) erz (A.3) 

where 

A,,(K) = l/[(h -$)‘R2 + K'] 

C,!')(K) = -A,,(K)e’/(e’-ee-‘) (A.4) 
Ci2)(rc) = Ah()“/(e”-e-“). 

Dejinition of the Coeflcients a, b and c 

I 

I 
0, v, 9) = zF,,(v, z) cos(g --:)Rz dz 

0 
1 

W, K,f, d = 
s 

Fh(K, Z)COS(~--&tzCOs(g +zZdz (A.3 
0 

s 1 

c(h, K,f, 9) = (f-:b Fh(~, z)sin(f-&rzcos(g -f)nzdz. 
0 

CONVECTION THERMIQUE DANS UNE COUCHE POREUSE ET HORIZONTALE 
AVEC DES SOURCES DE CHALEUR INTERNES 

R&urn&On obtient des solutions permanentes sous la forme d’hexagones et de rouleaux bidimen- 
sionnels, pour la convection dans une couche poreuse horizontale et chauffee inttrieurement. On LZudie 
la stabilite des boulements vis 8 vis de petites perturbations. On trouve que les hexagones descendants 
sont stables pour des nombres de Rayleigh R allant jusqu’a huit fois la valeur critique (SR,), tandis que 
les hexagones ascendants sont instables pour toutes les valeurs de R. Les rouleaux bidimensionnels sont 
stables dans le domaine 3R, i R < 7R. On trouve un bon accord avec quelques observations expbi- 

mentales de Buretta [l]. 
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DIE THERMISCHE KONVEKTION IN EINER HORIZONTALEN POROSEN 
SCHICHT MIT INNEREN WARMEQUELLEN 

Zusammenfassung--Fiir die Konvektion in einer horizontalen poriisen Schicht mit innercn Warmequellen 
werden station&e Losungen in Form hexagonaler und zweidimensionaler Rollzellen erhalten. Die 
Stabilitlt dieser Stromungen wird in bezug auf kleine Stiirungen untersucht. Abwartsgerichtete 
Hexagonalzellen erweisen sich bis zur 8-fachen kritischen Rayleigh-Zahl als stabil; aufwartsgerichtete 
Hexagonalzellen sind fur alle Rayleigh-Zahlen instabil. Zweidimensionale Rollzellen sind fur Rayleigh- 
Zahlen zwischen der 3-fachen und 7-fachen kritischen Rayleigh-Zahl stabil. Es liegt eine gute Uber- 

einstimmung mit einigen der Beobachtungen van Buretta [I] var. 

KOHBEKTMBHbIfi TEITJIOO6MEH B FOPH30HTAJIbHOM ITOPMCTOM 
CJIOE C BHYTPEHHHMH MCTOYHMKAMM TETLJIA 

hiHOTZlUHH - CTaUMOHapHOe PeUIeHHe KOHBeKUAU B TOpU30HTanbHOM nOpIiCTOM HarpeBaeMOM 

H3HYTPH CJlOe DaeT CT,,yKTypy KOHB’ZKTHBHOI-0 JlBWKeHkiII B BllAe IIIeCTUYrOJtbHHKOB R nBYMepHbIX 

BaJlOB. kiCCJleA)‘eTCR yCTOi+IHBOCTb Te’ieHHII n0 OTHOUEHHKI K He6OJIbUIHM B03MYlJleHHRM. HaBneHo, 

ST0 UleCTHYrOnbHBKB B HWKHeh YaCTIi CJIOR npORBJlflfOT )‘CTO&iMBOCTb npH 3Ha’VZHAIIX ‘IHCJIa PeJleR, 

R, B BOCeMb pa3 npeBblLUaK7UlHX KpkiTWECKOe 3Ha’ieHlie, 8R,, B TO BpeMn KaK IIIeCTA)‘rOnbHHK&i B 

BepXHeii ‘iaCTM HeYCTO&iABbI IlpH nm6bix 3Ha’ieHHIIX R. KpoMe TOrO Hat%leHO, YTO JlByXMepHble 

BaJIbl npOnBn5UOT YCTO~WBOCTb B AHana30He 3R,< R< 7R,. nOJIyYeH0 XOpOLUee COOTBeTCTBUe 

C 3KCnepHMeHTanbHbIMH AaHHblMH pa6OTbl EapeTTa [I]. 


